3 条题解

  • 0
    @ 2024-7-8 9:05:44

    完善UID:56的题解

    大家都知道,(​~不知道别看了~​)勾股定理就是a2+b2=c2 a^2+b^2=c^2 (直角三角形),所以c=a2+b2c=\sqrt{a^2+b^2}

    构造一个点aa和点bbaa点坐标为(X1,Y1)(X_1,Y_1)bb点坐标为(X2,Y2)(X_2,Y_2) ,用点aa和点bb互相做垂直线到cc点,坐标为(X2,Y1)(X_2,Y_1) ,所以(ac)2+(bc)2=(ab)2(ac)^2+(bc)^2=(ab)^2

    下面直接写结论:

    • (ac)2=(X2X1)2(ac)^2=(X_2-X_1)^2
    • (bc)2=(Y2Y1)2(bc)^2=(Y_2-Y_1)^2

    重点来了!:

    ab=[(X2X1)2+(Y2Y1)2]ab=[(X_2-X_1)^2+(Y2-Y1)^2] !!!!!

    重点又来了!:

    • 关于xx轴对称的两个点的坐标,横坐标相同,纵坐标相反。
    • 关于yy轴对称的两个点的坐标,横坐标相反,纵坐标相同。
    • 关于原点对称的两个点的坐标横纵坐标都相反。

    废话不多说,直接上代码:

    #include<bits/stdc++.h>
    using namespace std;
    int main(){
        double x1,y1,x2,y2;
        cin>>x1>>y1>>x2>>y2;
        if(y1*y2>0){
            y1=-y1;
        }
        printf("%.3lf",sqrt(pow(x2-x1,2)+pow(y2-y1,2)));
        return 0;
    }
    

    coery0208提醒:题解来源于UID:56,本人仅作修改,别赞,看了就行,不过抄袭是不良行为!

    信息

    ID
    485
    时间
    1000ms
    内存
    256MiB
    难度
    7
    标签
    递交数
    233
    已通过
    52
    上传者